editing disabled

The 52 equal division of 3, the tritave, divides it into 52 equal parts of 36.576 cents each, corresponding to 32.808 edo. It is something of a curiosity as it really needs to be considered as a 29-limit no-twos system. While not super-accurate, it gets the entire no-twos 29-limit to within 18 cents. It is distinctly flat, in the sense that 5, 7, 11, 13, 17, 19, 23 and 29 are all flat, so using something other than pure-threes tuning might be advisable. It is contorted in the 11-limit, so that it tempers out the same commas as 26edt in the 11-limit and 13edt in the 7-limit. Other commas it tempers out includes 121/119, 209/207, 247/245, 275/273, 299/297, 325/323, 345/343, 363/361, 377/375, 437/435, 495/493, 627/625, 665/663, 667/665, 847/845, 1127/1125, 1311/1309 and 1617/1615. It is the eleventh no-twos zeta peak edt.

Intervals

Steps
Cents
BP nonatonic degree
Diatonic degree
Corresponding JI intervals
Comments
Generator for...
1
36.6
Qa1/3d2
Sa1
50/49~33/32~49/48


2
73.15
Sa1/sd2
A1/dd2
25/24~28/27~22/21~27/26~24/23~21/20~29/28


3
109.7
3A1/qd2
A+1/d-2
15/14~16/15~29/27~121/112


4
146.3
A1/m2
AA1/sm2
27/25~25/23~49/45~13/12~14/13~11/10~169/162


5
182.9
Sm2
sm+2
10/9


6
219.5
N2
m2
9/8~8/7~44/39


7
256.0
sM2
N2
147/128~7/6


8
292.6
M2/d3
M2
32/27~25/21~13/11~27/23


9
329.2
Qa2/3d3
SM-2/d-2
6/5
11/9-

10
365.8
Sa2/sd3
SM2/dd3
5/4~16/13
11/9+

11
402.3
3A3/qd3
SM+2
81/64~63/50~33/26~23/18


12
438.9
A2/P3/d4
AA2/sm3
32/25~9/7~14/11~104/81~13/10


13
475.5
Qa3/3d4
sm+3
21/16~98/75


14
512.1
Sa3/sd4
m3
4/3~27/20~162/121


15
548.6
3A3/qd4
N3
11/8~243/169
18/13-

16
585.2
A3/m4/d5
M3
7/5~25/18~112/81~88/63~32/23~29/21
18/13+

17
621.8
Sm4/3d5
SM-3
10/7~36/25~81/56~63/44~23/16~42/29
13/9-

18
658.4
N4/sd5
SM3/dd4
16/11~338/243
13/9+

19
694.95
sM4/qd5
SM+3/d-4
3/2~40/27~121/81


20
731.5
M4/m5
AA3/d4
32/21~75/49


21
768.1
Qa4/Sm5
d+4
25/16~14/9~11/7~81/52


22
804.7
Sa4/N5
P4
8/5~36/23


23
841.25
3A4/sM5
A-4
13/8


24
877.8
A4/M5/d6
A4
5/3


25
914.4
Qa5/3d6
A+4
27/16~42/25~22/13~46/27


26
951.0
Sa5/sd6
AA4/dd5
125/72


27
987.55
3A5/qd6
d-5
16/9~8/7~39/22~75/46


28
1024.1
A5/m6/d7
d5
9/5


29
1060.7
Sm6/3d7
d+5
50/27~46/25~90/49~24/13~13/7~20/11


30
1097.3
N6/sd7
P5
15/8


31
1133.9
sM6/qd7
A-5
48/25~27/14~21/11~52/27~23/12~40/21~56/29


32
1170.4
M6/m7
A5/dd6
49/25~64/33~96/49


33
1207.0
Qa6/Sm7
A+5
2/1


34
1243.6
Sa6/N7
AA5/sm6
33/16~100/49~49/24~729/338


35
1280.2
3A6/sM7
sm+6
25/12~56/27~44/21~27/13


36
1316.7
A6/M7/d8
m6
15/7~32/15~58/27


37
1353.3
Qa7/3d8
N6
54/25~50/23~98/45~13/6~169/81


38
1389.9
Sa7/sd8
M6
20/9


39
1426.5
3A7/qd8
SM-6
9/4~16/7


40
1463.0
A7/P8/d9
SM6/dd7
147/64~7/3


41
1499.6
Qa8/3d9
SM+6/sm-7
64/27~50/21~26/11~81/23


42
1536.2
Sa8/sd9
AA6/sm7
12/5
22/9-

43
1572.7
3A8/qd9
sm-7
5/2~32/13
22/9+

44
1609.3
A8/m9
m7
81/32~63/25~33/13~23/9


45
1645.9
Sm9
N7
64/45~18/7~28/11~208/81~13/5


46
1682.5
N9
M7
21/8~196/75


47
1719.1
sM9
SM-7
8/3~27/10


48
1755.65
M9/d10
SM7/dd8
69/25~135/49
36/13-

49
1792.2
Qa9/3d10
SM+7/d-8
14/5~25/9~224/81~176/63~64/23~58/21
36/13+

50
1828.8
Sa9/sd10
A7/d8
20/7~72/25~81/28~63/22~23/8~84/29
26/9-

51
1865.4
3A9/qd10
P-8
147/50~32/11~338/81~144/49
26/9+

52
1902.0
A9/P10
P8
3/1
Tritave


It is a weird coincidence how 52edt intones any 52edo intervals within plus or minus 6.5 cents when it is supposed to have nothing to do with this other tuning:

52edt
52edo
Discrepancy
365.761
369.231
-3.47
512.065
507.692
+4.373
877.825
876.923
+0.902
1243.586
1246.154
-2.168
1389.89
1384.615
+5.275
1755.651
1753.846
+1.805
2121.411
2123.077
-1.666
2633.476
2630.769
+2.647
…and so on